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Figure 1.
The synthesis of pentadecyl 6-hydroxydodecanoate, a component isolated from the leaves of Artabotrys
odoratissimus, has been achieved through a tandem cross-metathesis/hydrogenation sequence. The enan-
tioselective synthesis required first the preparation of a homoallylic alcohol obtained by a free-metal allyl
transfer from a camphor derivative to heptanal.

� 2008 Elsevier Ltd. All rights reserved.
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Long chain hydroxy fatty acids and esters are common frame-
works in nature. Most of them exhibit important biological activi-
ties, or have found application in the cosmetic and perfume
industries.1 Pentadecyl 6-hydroxy-dodecanoate 1 has been iso-
lated and characterized by Mehta et al. from the leaves of Artabot-
rys odoratissimus (Fig. 1).2 Due to its potential biological activities
in the treatment of cholera, the synthesis of this compound has
been performed by Ballini et al. in five steps, including a nitroaldol
condensation as the key-reaction.3

Having developed a straightforward access to substituted pyr-
ones 4 from 3-O-(1,4-pentadienyl) butanoate 2a by a tandem
ring-closing/cross-coupling metathesis reaction4,5 (Scheme 1), we
have now investigated the synthesis of 1 by a similar strategy per-
formed on the homologous ester 2b (n = 2). The RCM could deliver
the unsaturated caprolactone while the vinyl group could be func-
tionalized with hexene (R = C4H9) according to a subsequent cross-
metathesis. Reduction of the two double bonds and ring-opening
ll rights reserved.

OC15H31
of the lactone with pentadecanol could be performed to finally
deliver the target molecule 1.

Unsaturated ester 2b, easily prepared by esterification under
DCC activation,6 was first engaged into a ring-closing metathesis
process without addition of an alkene counterpart and in the pres-
ence of catalytic amounts of Grubbs’ type II catalyst 3. Instead of
the expected unsubstituted heptenolide 5, we observed the forma-
tion of two macrodiolides 6a and 6b in similar amounts (Scheme
2). These symmetric compounds result from a cross-coupling/
ring-closing process between two molecules of 2, and differ only
by the relative configuration of one of the two stereocenters.7 1H
NMR spectra show unambiguously that the configuration of the
internal C@C bond is E for the two diastereoisomers (J = 15.1and
15.5 Hz).8 The same reaction performed in the presence of n-hex-
ene delivered an inseparable mixture of compounds.
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While the tandem RCM/CM appeared unefficient, we turned to
another strategy based on a tandem cross-metathesis/hydrogena-
tion,9,10 which could directly afford the expected structure in a sin-
gle step from readily available homoallylic alcohol 7 and
pentadecanyl but-2-enoate 8. Moreover, in order to develop an
enantioselective synthesis of 1, we synthesized 7 by the allyl-
transfer method reported by Loh and co-workers11 and we previ-
ously used for the synthesis of the hermitamides.12 Thus, heptanal
was treated with the allyl isoborneol 9 in the presence of catalytic
amounts of camphorsulfonic acid at rt to deliver 7 in 72% yield and
in 88% ee (Scheme 3).

The enantiomeric excess was determined by derivatization of
the alcohol 7 with homochiral (S)-2-phenylpropionic acid.13 It
should be noted that 7 in racemic form was also esterified with
the same acid to give a 1:1 mixture of the two diastereoisomers
10, which denotes no kinetic resolution during this process. The
cross-metathesis was first performed between racemic alcohol 7
and 8. Compound 11 was obtained apparently as a single isomer
in 49% yield and according to previous results, the E configuration
has been assigned to the new C@C bond. Hydrogenation over PtO2

gave (+/�)-1 in 94% yield. Starting from enantiomeric enriched 7,
the tandem cross-metathesis/hydrogenation was achieved under
a hydrogen atmosphere in the presence of Grubbs-Hoveyda
reagent 1214 and catalytic amounts of PtO2. By this way, 1 was
directly isolated in 56% yield (Scheme 4).15,16
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In conclusion, the synthesis of (6S)-pentadecyl 6-hydroxydode-
canoate 1 has been performed in only two steps from heptanal.
This strategy can be favorably compared to the previous synthesis,
which required up to five steps, and was performed on racemic
form.
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